

High Intensity Negative Ion Sources

Ka-Ngo Leung

Lawrence Berkeley National Laboratory

Snowmass'01
Working Group on High-Intensity Proton Sources
July 16, 2001

Brightness of an ion beam:

$$B = 2I - /\pi^2 E_x E_y$$

$$= 2J^{-}Mc^{2}/\pi^{2}T_{i}$$

Three Types of H- Ion Sources

Surface conversion sources

Volume production sources

 Hybrid production sources (or surface plasma sources)

Two Ion Source Technologies for Neutron Science

Volume Production

Surface Conversion

Multi-Cusp Plasma Source

Line-cusp magnetic fields

Radial plasma density profile

The 7.5-cm-diam Multicusp H- Ion Source

LAWRENCE BERKELEY NATIONAL LABORATORY

The RF-driven Multicusp Ion Source

The RF-driven Multicusp Source

The H- Beam Pulse of the SSC Ion Source

Emittance of the SSC H- Ion Beam

 $\epsilon = 0.06 \pi \text{ mm}$ $\epsilon = 0.06 \pi \text{ mm}$ mr $\epsilon = 0.06 \pi \text{ mm}$ mr divergence = 90 mr $\epsilon = 0.06 \pi \text{ mm}$ mr

H- Beam Current Pulse before and after the SSC RFQ

Vertical Axis : 4 mA/div Horizontal axis : 20 µs/div

Top trace : H- current 10 mA/div

Bottom trace : electron current 500 mA/div

Horizontal axis: 20 µs/div

SNS Ion Source Requirements

1 MW facility 2 to 4 MW facility

Source Type RF driven multicusp ion source,

Volume produced H, Cesium enhanced, Filter magnets

Current [mA] 35 70

Emittance [π mm mrad, norm rms] 0.15 0.2

RF frequency [MHz] 2 2

Plasma initiation flash lamp through quartz window

Electron suppression magnets in extraction plate, complete deflection

Final H- energy [keV] 65

Duty factor [%] 6.2

Chopping frequency [MHz] 1.188 1.188

Source Pressure [mTorr] 10

Lifetime [month] 1

LAWRENCE BERKELEY NATIONAL LABORATORY

LAWRENCE BERKELEY NATIONAL LABORATORY

RF H⁻ Source Operation Issues

- RF power supply
 - $-2 \mathrm{MH_z}$ or 13.5 $\mathrm{MH_z}$
- Antenna coating
 - porcelain, wire inside quartz tubing or metal tubing inside quartz tubing
- Plasma ignition schemes
 - filament, laser, flash lamp, dual-frequency
- Cesium enhancement
 - SAES getters, oven

Antenna Coating

A good antenna coating is needed for high power cw or pulse source operations

- to withstand a high potential gradient between the plasma and the antenna
- to minimize the sputtering of antenna material
- to increase the efficiency of the ion source

Different Antennas Used in the Life-Time Tests

Quartz Tube Antenna with Titanium Tube Inside

Starter Filament

Ignition of the RF Plasma with a Laser Beam

RF Plasma Ignition with Photons

The Collar with Cesium Dispensers

Electron Dumping and Beam Chopping

Surface Conversion Source

Electron dumping - low electron content

H⁻ beam chopping - by "kicking" the H⁻ beam inside the source

Volume Production Source

Electron dumping - strong magnetic field at source exit

- micro-channel to filter the electrons

H- beam chopping - modulating the extraction voltage at the micro-channel electrodes

Electron Removal (Argus Code Computation)

Ion Source and LEBT Schematic

The ion source with outlet and dumping electrodes is titled by 3 deg. with respect to the LEBT axis. Some magnet orientations are rotated into the viewing plane of this illustration. The shape of the beam envelope is exaggerated for emphasis.

H- Source and LEBT System

The SNS H- LEBT System

The SNS H- Ion Source

Ion-Source/LEBT Beam Current

68 mA peak current

50 mA average current

Chop Depth vs. Chop Voltage

- Chop voltage applied across deflector quadrants
- Most beam lost on LEBT diagnostic device
- Remaining beam lost in RFQ
- o 2.5 kV point recorded as zero
- Easily exceeds requirements for LEBT chopper
- Guaranteed performance with LEBT and MEBT choppers is an off/on ratio of 10⁻⁴.

Electron Filter for the Volume H⁻ Source

The Setup

$$T = \frac{F_{\text{holes}}}{F_{\text{hex}}} \approx 68.3\%$$

H- and Electron Trajectories

Surface-conversion Multicusp Ion Source Schematic

The LANSCE Surface Conversion H⁻ Source

LANSCE Prototype Source Scope Traces

H- Faraday Cup Signal 10 mA/V

Discharge 80 V, 74 A Converter 300V, 3.1A Source Pressure 1.1 mT Discharge 80 V, 100 A Converter 300V, 3.6 A Source Pressure 1.1 mT

LANSCE Ion Source 12 % Duty Factor

Y Scale 10 mA/div Time Base 5 msec/div

LANSCE Prototype Source Data

Interior of LANSCE Source with Cone Aperture

LANSCE H- Split Repeller

H- Split Repeller Structure

LANSCE Repeller Upgrade

Front-End Systems: Function

Ion Source/LEBT

Create 50-mA H⁻ ion beam

-RFQ

Accelerate beam to 2.5 MeV

LEBT/ MEBT

Chop beam into mini-pulses

MEBT

Match 40-mA beam into DTL

FES Integrated Testing Facility (Test Stand #1)

RFQ

LEBT

Ion Source

FES Integrated Testing Facility (Test Stand #1)

Ion-Source Test Stand #2

RFQ Module #1 Connected to LEBT on 4/19/01

